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Abstract 
Homogeneous mixing, where all instances of contacts between 

any two members of the population are equally likely, is a common 
assumption in modeling biodefense policies against smallpox. Such a 
mixing pattern is rather unlikely to represent population interaction in 
a modern urban setting, which typically is separated into households 
on one hand, and into daily meeting sites such as schools and offices, 
on the other hand. In this paper, we develop a dynamic two-level 
social interaction model where individuals move back and forth 
between home and daily meeting sites, possibly passing through a 
general meeting site such as a mass transit system or other crowded 
areas. Based on this difference-equations model, we evaluate the effect 
of situational awareness and response measures, such as vaccination, 
quarantining, and movement restrictions, on the spread of smallpox in 
the population. 
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1. Introduction 
Responding to a bioterror attack of smallpox has become a major concern to 

governments, local public officials, and health authorities. This concern has been 

reflected in studies that model and evaluate possible response policies against 

smallpox [1]-[8]. A common assumption in these models (e.g., [1]-[5]) is 

homogeneous mixing, where all instances of contacts between any two members of 

the population are equally likely. In other words, interactions in the population are 

uniformly random. The main implication of this assumption is that interaction 

probabilities among individuals depend only on the relative size of the susceptible and 

infectious populations—a feature that simplifies the analysis. 

 

Such a mixing pattern is quite unlikely to represent actual interactions in an urban 

setting where the population is typically divided into interconnecting subsets. 

Halloran et al. [6] present a heterogeneous mixing simulation model for smallpox 

where ad hoc social structure is considered. The model is applied to a small 

population of 2,000 people. An excellent review of recent smallpox models is by 

Furgeson et al [7]. A number of studies examine nonhomogeneous mixing in other 

epidemic settings. Some ad hoc social mixing patterns are studied in [9] and [10].  

Ball and Lyne [11] consider a population partitioned into households, with local 

mixing within households and global mixing throughout the population, and develop a 

vaccination optimization model. The effects of a similar social structure are studied by 

Koopman et al [12]. Other heterogeneous mixing models have been studied by Kaplan 

with respect to the AIDS epidemic [13] [14]. 

 

The concept of small world networks [15] [16] is utilized by several researchers to 

model nonhomogeneous transmission in a population [17]-[19]. Eubank et al. [18] 

develop a detailed large-scale urban traffic simulation, and find that interactions 

among people form a strongly connected small-world-like graph. They examine 

several response policies and conclude that outbreaks can be contained by a 

combination of targeted vaccination and early detection. 

 

In this paper we develop a two-level social interaction model that consists of 

households and other daily meeting sites such as schools, offices, and mass transit 

1 



systems. This SIR-based difference-equations model captures dynamic features of 

daily contacts among individuals in a major urban area. We apply this model to a 

large urban area (9 million people) and evaluate the effect of situational awareness 

(early detection and response) and several response measures, such as mass 

vaccination, quarantine, closure, mass-transit shutdown, and voluntary self-quarantine 

on the spread of the epidemic and on the total number of casualties. 

 

The rest of the paper is organized as follows. Section 2 describes the social structure 

that forms the base for our model and analysis. Section 3 outlines the stages of the 

epidemic and discusses possible response actions. The two-level model is described in 

Section 4. In Section 5, we report the results of the analysis that is based on our 

model. Discussion and concluding remarks are presented in Section 6. A detailed 

description of the difference-equation model is given in the Appendix. 

 

2. The Social Structure 
We assume that during each time period (i.e., a day) a person interacts with other 

persons mainly in two places: in the household (HH) and in the daily meeting site 

(DMS), such as school or workplace. There may also be incidental contacts in public 

places such as mass transit systems, restaurants, or theaters. We consider these 

contacts as occurring in a general meeting site (GMS). During the course of a day, a 

person is in (close) contact people with a relatively small number of individuals in the 

HH, then she meets colleagues, fellow students, or coworkers in the DMS, and finally 

she may also contact (mostly strangers) in the GMS. Figure 1 presents this  

interaction pattern. 
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Figure 1: Interaction Pattern in a Two-Level Social Structure 

 

Thus, we assume that the population is divided into m HHs of size h each. There are  

k DMSs, k > h, and one GMS. On each day, members of a HH visit certain DMSs. We 

assume a worst-case scenario, from the epidemic spread point of view, where the 

DMSs are chosen randomly and independently by HH members each day. We also 

assume that effectively no two members of a certain HH visit the same DMS, e.g., a 

mother does not visit the school (at least not for a significant length of time) and her 

child does not visit her workplace. Thus, members of the same HH do not interact in a 

DMS. They interact in the HH and possibly in the GMS (e.g., if both use the mass 

transit system on a certain day). Within each subset of population—HH, DMS, and 

GMS—we assume homogeneous mixing. However, the contact rates (and hence the 

transmission rates of the disease) are different in the three environments; the 

transmission rate is highest in a HH and lowest in the GMS. 

 

The spread of the epidemic is observed at discrete time periods (days). Each time 

period is divided into two parts: the HH subperiod and the DMS subperiod. During 

the HH subperiod individuals stay in their respective HHs (homes), while during the 

DMS subperiod they are present in their respective DMSs (workplace, school, etc.). 

Some individuals may visit also the GMS in-between the two periods. The state of the 

epidemic in the HHs and DMSs is monitored at four points during a time period: at 
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the beginning and end of the HH subperiod, and at the beginning and end of the  

DMS subperiod. At the beginning of the HH subperiod, we observe the state of the 

members of a HH after they return from the DMSs and possibly GMS, and at the end 

of that period, we observe the transitions that have occurred in the HH during the  

HH subperiod. Similar observations apply to the DMS subperiod. 

 

3. The Epidemic and Possible Response Actions 
The stages of the epidemic are S, A, B, I, and Q for susceptible, infected and 

immunable (vaccine sensitive), infected and nonimmunable, infectious and 

quarantined. A HH is said to be infected if at least one member in the HH is infected, 

but no one is infectious (symptomatic). An infected HH may be immunable (denoted 

type A) if all of its infected members are immunable. Otherwise, it is not-immunable 

(type B).  Clearly, some members in a nonimmunable infected HH (type B) may be 

susceptible (at stage S) or infected and immunable (stage A). A HH is said to be 

infectious (type I) if at least one member in the HH is or has been infectious, and it is 

said to be quarantined (type Q) if it has been put in quarantine. Otherwise, a HH is 

said to be susceptible (type S). We assume that vaccination and quarantine are applied 

to HHs and not to individuals. We assume perfect vaccination efficacy, therefore, 

susceptible or infected-immunable HHs that are vaccinated are removed from further 

consideration. Once an infectious individual is detected, his entire HH is quarantined. 

If that HH has not been previously vaccinated, all asymptomatic members are 

vaccinated upon entering the quarantine. Only infectious HHs are quarantined. 

 

HHs of types B and I that are vaccinated are labeled BV and IV, respectively. Also, 

QV denotes a quarantined HH that has been previously vaccinated. Figure 2 presents 

the transitions among the stages. 
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Figure 2: The Stages of the Epidemic 

 

Since we assume perfect vaccination efficacy, vaccinated HHs of type S and A are 

immune and removed. Households of types B and I may be vaccinated, but only the 

individuals at stages S and A in those HHs become immune. The rest (those at stages 

B and I) are unaffected by the vaccination. 

 

Without loss of generality we assume that transitions in the stage of a HH, including 

vaccination and quarantining, occur during the HH period. A DMS may be either 

infectious, if at least one member is infectious, or noninfectious. Infectious DMSs may 

generate new infected individuals. 

 

We consider the following response actions: 

 

• Mass vaccination; 

• Quarantine; 

• Shutdown of GMSs (e.g., shutdown of a mass transit system); 

• Closure of DMSs (e.g., closing up schools); and 

• Encouraging people to stay home. 
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The response actions are initiated after a certain number of individuals become 

infectious (Stage I). We assume that the vaccination and the DMS closure processes 

start after there are  infectious individuals. This number is the vaccination/DMS 

closure threshold. The smaller the value of 

1∆

1∆ , the better the situational awareness 

capabilities of the system. The shutdown of the GMS is also triggered by the number 

of infectious individuals in the population. The GMS is shut down if this number 

exceeds . While the GMS is shut down instantaneously following a decision to that 

effect, the process of closing up the DMSs is gradual and takes time. Once the DMS 

closure process is initiated, it proceeds with a rate 

2∆

δ . 

 

We assume that a fraction γ  of the population passes through the GMS, and a 

proportion β  of the (not yet isolated) infectious individuals complies with requests of 

the authorities and voluntarily stay at home. Note that in terms of the epidemic spread, 

the latter assumption represents a worst-case scenario; self-imposed quarantine does 

not apply to susceptible individuals—only to infectious ones. Finally, infectious HHs 

are isolated (removed) at a rate ρ . 

 

4. The Model 
The model comprises a set of difference-equations shown in the Appendix. It is 

essentially a deterministic model, but with embedded probabilities that capture the 

transition intensities between stages. The spread of the disease is observed at  

two levels: high level, at which we observe the transitions between sets (HHs and 

DMSs), and low level, at which we observe the transitions within sets. At any time 

period t, we record the number of sets of a certain type (e.g., S, A, etc.) at the high 

level, and the average profile (composition) of disease stages within a set, at the low 

level. For example, B(t) is the number of HHs of type B, and ( ), ( ), ( )B B Bs t a t b t  are 

the average numbers of individuals in such HHs that are at stages S, A, and B, 

respectively. The difference equations, shown in the Appendix, describe the 

transitions between sets of stages at the high level, and the changes in the average 

profiles within sets, at the low level. Recall that at each time period (day) the 

epidemic is observed four times: at the beginning and end of the HH subperiod, and 

the beginning and end of the DMS subperiod. 
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To simplify notation, we use capitals to denote both the type of a set and the number 

of sets of that type. For example, I(t) denotes an infectious HH and the number of 

such HHs in the population. This double meaning should cause no confusion. 

Specifically, the symbol ( )jX t  denotes the number of sets (HHs or DMSs) of type X 

at time t. The index j is 0,1 where j = 0 indicates a beginning of a subperiod (HH or 

DMS), and j = 1 indicates the end of it. To summarize, X gets the following values:  

 

S –  Number of susceptible HHs. 

A – Number of infective-immunable HHs. 

B – Number of infective nonimmunable HHs. 

BV – Number of infective nonimmunable HHs that have been vaccinated  

(Only individuals at stage B remain infective, the rest—S and A individuals—

are vaccinated and removed). 

I – Number of infectious HHs that have not been vaccinated yet. I0 are newly 

infected HHs. 

IV – Number of infectious HHs that have been vaccinated. VI0 are newly  

infected HHs. 

Q –  Number of isolated HHs. 

QV – Number of isolated, previously vaccinated, HHs. 

D – Number of open DMSs. 

ID – Number of open infectious DMSs. 

 

The notation at the low level is of the form , where y indicates the stage of the 

epidemic, X is the type of HH or DMS, and j is a 0,1 parameter as before. Thus,  

for example: 

( )j
Xy t

 
0 ( )As t – Average number of susceptible individuals, at the beginning of the t-th HH 

period, in an infective-immunable HH that has not been vaccinated yet. 
1 ( )IVs t – Average number of susceptible individuals, at the end of the t-th HH period, 

in an infectious HH that has been vaccinated. 
0 ( )Aa t – Average number of immunable infective individuals, at the beginning of the 

t-th HH period, in an infective HH that has not been vaccinated yet. 
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1 ( )BVb t – Average number of nonimmunable infective individuals, at the end of the  

t-th HH period, in an infective nonimmunable HH that has been vaccinated. 
1( )Ii t – Average number of infectious individuals, at the end of the t-th HH period, 

in an infectious HH that has not been vaccinated yet. 
0 ( )IDs t – Average number of susceptible individuals in an infectious DMS at the 

beginning of the DMS period. 

 

In addition, we denote 

 

( )New
Xa t – Average number of newly infected individuals in an infectious DMS, who 

belong to a HH of type X, X=S, A, B, BV, I, IV.  is the average 

total number of newly infected individuals in an infectious DMS. 

( )New
IDa t

 

Note that while the number of individuals in a HH remains constant throughout the 

epidemic, the average number of individuals in a DMS changes over time as HHs are 

isolated and infectious persons stay home. 

 

The parameters of the model are: 

 

M  – Number of HHs. 

K  – Number of DMSs. 

h  – Size of a HH. 

V  – Vaccination capacity (# of HHs/day). 

V  – Vaccination rate (percentage of population vaccinated). 

p  – Transition rate between stages A and B. 

q  – Transition rate between stages B and I. 

Hα   – Infection rate in a HH. 

Dα   – Infection rate in a DMS. 

Gα   – Infection rate in the GMS. 

γ   – Fraction of individuals that visit the GMS during a time-period. 
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β   – Fraction of infectious people in a (not yet isolated) infectious HH that stay 

home because of personal choice (regardless if their corresponding DMSs are 

closed or open). 

ρ   – Isolation rate of infectious HHs. 

θ   – Recovery rate from isolation. 

δ   – Closure rate of (infectious) DMSs. 

1∆  – Vaccination/DMS closure threshold. 

2∆  – GMS shutdown threshold. 

 

To demonstrate the basic idea of the model we present next a sample of three  

typical equations: 

 

1. High level transition during the HH subperiod: 

 

 . (1) 
0 0( ) ( )1 0 0( ) [ ( )(1 ) ( )(1 (1 ) )] {1 ( ),0}B Ab t a tB t B t q A t p Max v t= − + − − −

 

Equation (1) gives the number of HHs of type B (not yet vaccinated) at the end of the 

HH subperiod. 

 

2. Low level transition:  

 

 0 0( ) ( )1 0 0 0 0
1

1( ) ( ) ( )(1 ) ( ) ( )(1 (1 ) {1 ( ),0}
( )

B Ab t a t
B B As t s t B t q s t A t p Max v t

B t
 = − + − −  − . (2) 

 

Equation (2) gives the average number of susceptible individuals in HHs of type B. 

 

3. Low level in a DMS. 

 

 . (3) 0 0( )New
ID D ID IDa t s iα=

 
Equation (3) gives the average number of newly infected in an infectious DMS. 
 
The complete set of equations is presented in the Appendix. 
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5. Analysis 
We consider two base cases. In Base Case 1, we assume that the response policy is 

based only on mass vaccination and quarantine of infectious HHs. Other response 

measures such as DMSs closure, GMS shutdown, and compliance with self-imposed 

quarantine are not implemented. Base case 2 is the complement of Base Case 1. There 

is no mass vaccination, only quarantine (and vaccination) of infectious (type I) HHs 

that are detected. However, DMSs are gradually closed up, the GMS is shut down 

after a while, and a certain proportion of infectious individuals (not yet quarantined) 

stay home. In both cases, we assume that the initial attack resulted in ten casualties 

(infected people) in each one of five DMSs plus ten infected in the GMS. Table 1 

presents the parameters that are fixed for both base cases and in the subsequent 

sensitivity analysis. 

 

Parameter Description Value 
M Number of HHs 3,000,000 
h Average size of a HH 3 
k Number of DMSs 10000 
Hα  Infection rate in a HH 0.5 

Dα  Infection rate in a DMS 0.001 

Gα  Infection rate in the GMS 0.000001 
p  Disease stage A rate 0.3 
q  Disease stage B rate 0.12 
ρ  Disease stage I rate 

(Isolation rate of infectious HHs) 
0.3 

θ  Disease stage Q rate 
(Recovery rate) 

0.083 

γ  Proportion of population that passes through the GMS 0.5 
Table 1: Values of Fixed Parameters 

 

Table 2 presents the values of the remaining parameters in the two base cases. 

 

Parameter Description Base Case 1 Base Case 2
δ  Closure rate of DMSs 0 .03 
β  Fraction of infectious individuals that stay home 0 .5 

1∆  Vaccination/DMS Closure Threshold 20 20 

2∆  GMS Shutdown Threshold No Closure 250 

V Vaccination Capacity (HHs/Day) 157,000 0 

Table 2: Values of Variable Parameters 
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Based on these parameters, Base Case 1 (vaccination, no public restrictions) results in 

2,068 infectious individuals in addition to the casualties of the initial attack, while 

Base Case 2 (no vaccination, public restrictions) results in 2,070 additional casualties. 

Evidently, the total numbers of casualties are essentially equal. That is, preventive 

measures that include closure of DMSs at a rate of 3% per day, shutting down the 

GMS when there are 250 infectious cases, and 50% infectious “stay-home” 

compliance is equivalent to the mass vaccination of 157,000 HHs per day with no 

other social movement-control measures. However, the way the epidemic evolves 

over time in these two cases is significantly different, as shown in Figure 3. 
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Figure 3: Daily Numbers of Newly Infectious 

 

Figure 4 presents the daily number of people in quarantine in both base cases. 
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Figure 4: Daily Numbers of People in Quarantine 
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As shown in Figure 3, the epidemic in Base Case 1 is shorter, but with a higher daily 

peak than Base Case 2. Figure 4 shows the ramification of this effect, namely, higher 

demand in Base Case 1 for peak quarantine capacity than in Base Case 2. 

 

Next, we investigate the sensitivity of these base cases to changes in the values of the 

operational parameters. The measure of effectiveness is the number of casualties, 

which are the total number of infectious individuals. Figure 5 shows the impact of 

situational awareness and responsiveness of the public-health system. The delay in the 

vaccination process, which is represented by the number of infectious individuals that 

trigger the initiation of the process, affects the number of casualties. If the  

public-health system has excellent situational awareness and is quick to respond, then 

the minimum possible number of casualties is about 850. If, because of poor 

situational awareness and/or slow response, there are, say, 80 infectious people in the 

population before vaccination starts, then the number of casualties is higher in an 

order of magnitude. 

 

Figures 6-8 depict the consequences of Base Case 1 (with V = 150,000 HHs/day) 

when additional social movement-control measures are imposed. Figure 6 investigates 

the effect of DMS closure on the number of casualties. With no DMS closure, the 

number of casualties is close to 2,400. A closure process at a rate of 10% a day 

decreases the number of casualties to about 500. The effect of the delay in shutting 

down the GMS is shown in Figure 7. If, theoretically, the GMS (e.g., mass transit 

system) is shut down immediately following the attack, then there are only  

282 casualties. If it is shut down when there are already 500 infectious individuals, 

then the consequence is 1,987 casualties. 
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Figure 5: The Effect of Vaccination Threshold – Base Case 1 
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Figure 6: The Effect of DMSs Closure Rate – Base Case 1 

 

0

500

1000

1500

2000

2500

0 50 100 150 200 250 500

GMS Shutdown Threshold

N
um

be
r o

f C
as

ua
lti

es

 

Figure 7: The Effect of GMS Shutdown Threshold – Base Case 1 
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The effect of voluntary self-quarantine is demonstrated in Figure 8. Note that if 60% 

of the infectious individuals stay home, then the number of casualties is reduced by 

almost 80% compared to no self-quarantine. 
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Figure 8: The Effect of Self-Quarantine – Base Case 1 

 
Let us consider now Base Case 2 and investigate the effect of adding to the social 

movement-control measures mass vaccination. Figures 9-12 depict the effect of 

vaccination capacity, with respect to DMSs’ closure rate (δ ), vaccination/DMS 

closure threshold ( ), GMS shutdown threshold (1∆ 2∆ ), and self-quarantine 

compliance rate ( β ), respectively. Each chart represents the base case and two 

additional possible scenarios, worse case (darker shade) and better case  

(lighter shade). 
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Figure 9: Effect of DMSs’ Closure Rate 
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Figure 10: Effect of Vaccination/DMS Closure Threshold 
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Figure 11: Effect of GMS Shutdown Threshold 
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Figure 12: Effect of Self-quarantine 
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Figures 9-12 reveal a consistent picture, namely, that the impact of situational 

awareness and social movement-control measures can be significant, but it decreases 

as the vaccination capacity increases. One small exception is the vaccination/closure 

threshold . Even if the vaccination capacity is 240,000 HHs/day, the number of 

casualties in the worse case scenario 

1∆

1 50∆ =  is almost 3.5 times higher than in the 

case where  1 5.∆ =

 

6. Discussion and Conclusions 
Figures 3 and 4 demonstrate that (mass) vaccination-free policies, where the response 

relies entirely on social movement-control measures, may be compatible to a policy 

that is based on mass vaccination. Moreover, while the latter policy eradicates the 

epidemic faster than the former, the required peak quarantine capacity is significantly 

higher. Figures 5-8 show what happens if a mass vaccination policy is augmented 

with social movement-control measures and situational awareness is considered. The 

effects are quite significant. For example, if one-third of the infectious population 

withdraws to their home, the number of casualties is reduced by 55% compared with 

no self-quarantine. A similar effect is recorded when the GMS is shutdown early in 

the epidemic. If the trigger for a shutdown is 250 infectious people in the population, 

then the number of casualties is 1,594. If the trigger is 50 people, then the result is 

only 742 casualties. 

 

These results indicate that a hybrid policy that combines moderate rate of  

mass-vaccination with moderate application of social movement-control measures 

may be an efficient response policy. Table 3 presents the parameters of a third  

base-case, which is a combination of the two approaches: vaccination and social 

movement-control. 

 

Parameter Description Base Case 3 
δ  Closure rate of DMSs .01 
β  Fraction of infectious individuals that stay home .3 

1∆  Vaccination/DMS Closure Threshold 10 

2∆  GMS Shutdown Threshold 100 

V Vaccination Capacity (HHs/Day) 75,000 

Table 3: Base Case 3 
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The total number of casualties in Base Case 3 is 1,358—about 35% less casualties 

than in Base Cases 1 and 2. Similar to Figure 3, Figure 13 compares the three base 

cases over the period of the epidemic. 
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Figure 13: Daily Numbers of Newly Infectious – Base Cases 1, 2, and 3 

 

While the peak of the epidemic is about the same as in Base Case 2 (47 casualties in  

Base Case 2, 43 casualties in Base Case 3), the epidemic is eradicated much faster:  

76 days compared with 113 days. 

 17



Appendix: Difference-Equations Model 
 

A. HH Subperiod 

Let 

 0 0 0
( )( )

( ) ( ) ( )
V tv t

S t A t I t
=

+ +
 (4) 

 

v(t) is the vaccination rate. 

 

High Level 

 

  (5) 1 0( ) ( ) {1 ( ),0}S t S t Max v t= −

  (6) 
0 ( )1 0( ) ( )(1 ) {1 ( ),0}Aa tA t A t p Max v t= − −

  (7) 
0 0( ) ( )1 0 0( ) [ ( )(1 ) ( )(1 (1 ) )] {1 ( ),0}B Ab t a tB t B t q A t p Max v t= − + − − −

 
 

0 0 0( ) ( ) ( )1 0 0 0( ) ( )(1 ) [ ( )(1 ) ( )(1 (1 ) )] { ( ),1}BV B Ab t b t a tBV t BV t q B t q A t p Min v t= − + − + − −  (8) 

  (9) 
0 ( )1 0

0( ) ( )[1 (1 ) ] {1 ( ),0}Bb tI t B t q Max v t= − − −

 
0 0( ) ( )1 0 0

0 ( ) [1 (1 ) ] ( )[1 (1 ) ] {1, ( )}BV Bb t b tIV t BV q B t q Min v t= − − + − −  (10) 

 1 0( ) ( ) {1 ( ),0}(1 )I t I t Max v t ρ= − −  (11) 

 
 1 0 0( ) ( ( ) ( ) {1, ( )})(1 )IV t IV t I t Min v t ρ= + −  (12) 

 0( ) ( ) ( 1)Q t I t Q tρ= + −  (13) 

 0( ) ( ) ( 1)QV t IV t QV tρ= + − . (14) 

 
Low Level 
 
Susceptible HH (S) 
 

1 0( ) ( )S Ss t s t h= =  (15)  

 . (16) 1 1 1 0 0 0( ) ( ) ( ) ( ) ( ) ( ) 0S S S S S Sa t b t i t a t b t i t= = = = = =
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Infective Immunable HH (A) 
 
 1 0( ) ( )A As t s t=  (17) 

  (18) 1 0( ) ( )A Aa t a t=

 1 0( ) ( ) 0A Ab t b t= =  (19) 

 1 0( ) ( ) 0A Ai t i t= = . (20) 

 
Infective Not-immunable HH (B) 
 

 0 0( ) ( )1 0 0 0 0
1

1( ) ( ) ( )(1 ) ( ) ( )(1 (1 ) {1 ( ),0}
( )

B Ab t a t
B B As t s t B t q s t A t p Max v t

B t
 = − + − −  −  (21) 

 

0

0

0

( )1 0 0
1

( )0 0
( )

1( ) ( )(1 ) ( )(1 )
( )

( ) 1 ( )(1 (1 ) ) {1 ( ),0}
1 (1 )

B

A

A

b t
B B

a t
A a t

a t a t p B t q
B t

pa t A t p Max v t
p

= − − +


 
− − −    − −  

−

 (22) 

 

0

0

0

( )1 0 0 0
1

( )0 0
( )

1( ) ( ( ) ) ( )(1 )
( )

( ) ( )(1 (1 ) ) {1 ( ),0}
1 (1 )

B

A

A

b t
B B B

a t
A a t

b t b t a p B t q
B t

pa t A t p Max v t
p

= + − +



− − −

− − 

 (23) 

 1 0( ) ( ) 0B Bi t i t= = . (24) 

 
Vaccinated Infective Not-immunable HH (BV) 

  

  (25) 1 0 1 0 0 1( ) ( ) ( ) ( ) ( ) ( ) 0BV BV BV BV BV BVs t s t a t a t i t i t= = = = = =

 

0

0

0

0

( )1 0 0
1

( )0 0 0

( )0 0
( )

1( ) ( ) ( )(1 )
( )

( ( ) ) ( )(1 )

( ) ( )(1 (1 ) ) { ( ),1}
1 (1 )

BV

B

A

A

b t
BV BV

b t
B B

a t
A a t

b t b t BV t q
BV t

b t a p B t q

pa t A t p Min v t
p

= − +

 + − +


− − 

− −   

. (26) 
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Newly Infectious HH (I0) 
 
  (27) 

0

1 0( ) ( )I Bs t s t=

 
0

1 0( ) ( )(1 )I Ba t a t p= −  (28) 

 00

1 0 0
( )

( ) ( ) 1 ( )
1 (1 ) B

I B Bb t
qb t b t a t p
q

 
= − +  − − 

 (29) 

 00

1 0
( )

( ) ( )
1 (1 ) B

I B b t
qi t b t
q

=
− −

. (30) 

Vaccinated Newly Infectious HH (IV0) 
 
  (31) 

0 0 0 0

1 0 1 0( ) ( ) ( ) ( ) 0IV IV IV IVs t s t a t a t= = = =

 

 

0

00

0

0

( )1 0 0
1 ( )
0

( )0 0
( )

1( ) ( ) 1 ( )(1 (1 ) )
( ) 1 (1 )

( ) 1 ( )(1 (1 ) ) { ( ),1}
1 (1 )

BV

BV

B

B

b t
IV BV b t

b t
B b t

qb t b t BV t q
IV t q

qb t B t q Min v t
q

  = − − −   − −  
  + − − −   − −   

 (32) 

 { }0

1 0 0 0 0
1
0

1( ) ( ) ( ) ( ) ( ) { ( ),1}
( )IV BV Bi t qb t BV t qb t B t Min v t

IV t
= +

. (33) 

Infectious HH (I) 
 
  (34) 1 0 0(1 )I I H Is s iα= −

  (35) 1 0( ) ( )(1 )I I Ha t a t p s iα= − + 0 0
I I

  (36) 1 0 0( ) ( )(1 ) ( )I I Ib t b t q a t p= − +

 . (37) 1 0 0( ) ( ) ( )I I Ii t i t b t q= +

 
Vaccinated Infectious HH (IV) 
 
 1 0 1 0( ) ( ) ( ) ( ) 0IV IV IV IVs t s t a t a t= = = =  (38) 

 1 0( ) ( )(1 )IV IVb t b t q= −  (39) 

 . (40) 1 0 0( ) ( ) ( )IV IV IVi t i t b t= + q
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Isolated Not Previously Vaccinated HH (Q) 
(Assumption: Individuals not previously vaccinated are vaccinated immediately upon 
arrival at the quarantine). 
 
 1 0 1 0( ) ( ) ( ) ( ) 0Q Q Q Qs t s t a t a t= = = =  (41) 

 ( ){ ( ) }0 01( ) 1 ( 1) ( 1) 1 ( ) ( )
( )Q Q Ib t q b t Q t q b t I t

Q t
ρ= − − − + −  (42) 

 { }0 0 01( ) ( 1) ( 1) ( 1) ( ( ) ( )) ( )
( )Q Q Q I Ii t i t qb t Q t qb t i t I t

Q t
ρ= − + − − + + . (43) 

 
Isolated Previously Vaccinated HH (QV) 
 

1 0 1 0( ) ( ) ( ) ( ) 0QV QV QV QVs t s t a t a t= = = =  (44)  

 ( ){ ( ) }0 01( ) ( 1) 1 ( 1) ( ) 1 ( )
( )QV QV IVb t b t q QV t b t q IV t

QV t
ρ= − − − + −  (45) 

 { }0 0 01( ) ( 1) ( 1) ( 1) ( ( ) ( )) ( )
( )QV QV QV IV IVi t i t qb t QV t qb t i t IV t

QV t
ρ= − + − − + + . (46) 

 
At the end of the HH-cycle, the total number of susceptibles and immunable  
infected are: 
 
  (47) 

0

1 1 1 1 1 1 1 1 1 1
0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Total A B I Is t S t h A t s t B t s t I t s t I t s t= + + + +

 . (48) 
0

1 1 1 1 1 1 1 1
0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Total A B I Ia t A t a t B t a t I t a t I t a t= + + + 1

1
I

0

 

And the total number of infectious individuals is: 
 

 . (49) 
0 0

1 1 1 1 1 1 1 1 1
0 0( ) ( ) ( )) ( ) ( )) ( ) ( )) ( ) ( ))Total I I IV IVi t I t i t I t i t IV t i t IV t i t= + + +

 
The number of commuting infectious individuals from an infectious HH is 
 
 . (50) 1 ( ) (1 ) ( )Iic t i tβ= −

0

1 1 1( ), ( ) and ( )I IV IVic t ic t ic t are defined similarly. 
 
The total commuting infectious individuals is: 
 

0 0

1 1 1 1 1 1 1 1 1
0 0( ) ( ) ( )) ( ) ( )) ( ) ( )) ( ) ( )Total I I IV IVic t I t ic t I t ic t IV t ic t IV t ic t= + + + . (51)  
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B. Transition HH  GMS DMS 
 
DMS 

 
 ( ) (1 ) ( 1)D t D tδ= − −  (52) 

1 111
0 0

0 0

( ) ( )( )( ) 1 111 ( ) ( )( )( )( ) ( ) 1 1 1 1 1

I t IV tIV tI t
I IIVI ic t ic tic tic tID t D t

K K K K

          = − − − − −                 

V (53) 

 
Explanation: Suppose D(t) = uK. Only a proportion u of the DMSs are open and therefore only a 
proportion u of the population leaves home. Since each member of a HH goes to a different DMS, this 
means that only ui leave home. ui/uK = i/K. 
 

Individuals 
 
We assume that the contacts in the GMS occur between the HH cycle and the  
DMS cycle. 
 

 1( )( ) ( )GMS Total
D ti t ic
K

γ= t

t

 (54) 

  (55) 1( ) ( )GMS Totals t sγ=

 
The number of newly infected individuals at the GMS is: 
 
 . (56) ( )New

GMS G GMS GMSa t s iα=

 
Let 

denote the number of newly infected at the GMS that belong to S, A, B, and I HH, 
respectively. Since the probability that a newly infective belongs to a certain type of a 
HH is proportional to the number of susceptibles in such a HH, we have: 

( ), ( ),  ( ) and ( ), ( ) ( ) ( ) ( ) ( ),New New New New New New New New New
GS GA GB GI GS GA GB GS GMSa t a t a t a t a t a t a t a t a t+ + + =

 

 
1

1
( )( ) ( )

( )
New New
GS GMS

Total

S t ha t a t
s t

=  (57) 

 
1 1

1
( ) ( )( ) ( )

( )
New New A
GA GMS

Total

A t s ta t a t
s t

=  (58) 

 
1 1

1
( ) ( )( ) ( )

( )
New New B
GB GMS

Total

B t s ta t a t
s t

=  (59) 

 0

1 1 1 1
0

1

( ) ( ) ( ) ( )
( ) ( )

( )
INew New

GI GMS
Total

II t s t I t s t
a t a t

s t

+
= . (60) 
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Infectious DMS (ID) 
 

 
1

0 ( )( )( )
( )

Total
ID

ic tD ti t
K ID t

=  (61) 

 
1

0 ( ) ( )( )
New

Total GMS
ID

s t as t
K
−

=
t . (62) 

 
Since response actions and transitions between disease stages are assumed to take 
place during the HHs cycle, we do not need to track either the noninfectious open 
DMSs or the individuals who are at the latent stages (immunable and nonimmunable) 
of the disease. 
 

C. DMS Cycle 
 
Since transitions between disease stages are assumed to take place only in the HHs, 
the DMSs do not change their status during this cycle. The only parameter of interest 
during the DMS cycle is the number of newly infected. 
 

Individuals 
 
Infectious Open DMS (ID) 
 
The number of newly infected individuals in an open DMS is: 
 
 . (63) 0 0( )New

ID D ID IDa t s iα=
 
A newly infected individual may belong to a susceptible HH (S), an infective HH (A), 
or an infectious HH (I). 
 
Let 

 
denote the number of newly infectives that belong to S, A, and I HH, respectively. 
Since the probability that a newly infective belongs to a certain type of HH is 
proportional to the number of susceptibles in such a HH, we have: 

( ), ( ), ( ) and ( ), ( ) ( ) ( ) ( ) ( ),New New New New New New New New New
DS DA DB DI DS DA DB DS IDa t a t a t a t a t a t a t a t a t+ + + =

 

 
1

1
( )( ) ( )

( )
New New
DS ID

Total

S t ha t a t
s t

=  (64) 

 
1 1

1
( ) ( )( ) ( )

( )
New New B
DB ID

Total

B t s ta t a t
s t

=  (65) 

 
1 1

1
( ) ( )( ) ( )

( )
New New B
DB ID

Total

B t s ta t a t
s t

=  (66) 

 0

1 1 1 1
0

1

( ) ( ) ( ) ( )
( ) ( )

( )
INew New

DI ID
Total

II t s t I t s t
a t a t

s t

+
= . (67) 
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D. DMS – HH Transition 
 

HH 
  
Let 
 

 
( 1)

0 1
1

( 1) ( 1)( ) ( 1) 1 1
( 1) ( 1)

ID tNew New
DS GSa t a tS t S t
S t S t

−
  −

= − − −    − −   
1

−
  (68) 

  (69) 0 1 1 0( ) ( 1) ( 1) ( )A t A t S t S t= − + − −

 0 1( ) ( 1)B t B t= −  (70) 

 
 0 1( ) ( 1)BV t BV t= −  (71) 

 
 0 1 1

0( ) ( 1) ( 1)I t I t I t= − + −  (72) 

 0 1 1
0( ) ( 1) ( 1)IV t IV t IV t= − + − . (73) 

 
Individuals 
 

Susceptible HH (S) 
 

 0 ( )Ss t h=  (74) 

 0 0 0( ) ( ) ( ) 0S S Sa t b t i t= = = . (75) 

 
Infective Immunable HH (A) 
 

 

0 1 1
0

1 0

1( ) ( 1) ( 1) ( 1)( ( 1) ( 1))
( )

( ( 1) ( 1)) ( ( 1) ( ))

New New
A A DA

New New
GA GS

s t A t s t ID t a t a t
A t

a t a t S t S t h

= − − − − − +

− − + − + − − 

DS −
 (76) 

 

0 1 1
0
1( ) ( 1) ( 1) ( 1)( ( 1) ( 1))
( )

( 1) ( 1)

New New
A A DA

New New
GA GS

a t A t a t ID t a t a t
A t

a t a t

= − − + − − +

+ − + − 

DS −
 (77) 

 0 ( ) 0Ab t =  (78) 

 
 0 ( ) 0Ai t = . (79) 
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Infective Not-immunable HH (B) 
 

 0 1 1
0

1( ) ( 1) ( 1) ( 1) ( 1) ( 1)
( )

New New
B B DB GBs t B t s t ID t a t a t

B t
 = − − − − − − −  (80) 

 0 1 1
0

1( ) ( 1) ( 1) ( 1) ( 1) ( 1)
( )

New New
B B DB GBa t B t a t ID t a t a t

B t
 = − − + − − + −   (81) 

 0 1( ) ( 1)B Bb t b t= −  (82) 

 0 ( ) 0Bi t = . (83) 

 
Infectious HH (I) 
 

 0

0 1 1 1 1
00

1( ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
( )

( 1)

New
I I I DI

New
GI

s t I t s t I t s t ID t a t
I t

a t

= − − + − − − − −

− − 

 (84) 

 0

0 1 1 1 1
00

1( ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
( )

( 1)

New
I I I

New
GI

a t I t a t I t a t ID t a t
I t

a t

= − − + − − + −

+ − 

DI −
 (85) 

 0

1 1 1 1
00

0

( 1) ( 1) ( 1) ( 1)
( )

( )
I

I
I t b t I t b t

b t
I t

I− − + − −
=  (86) 

 

 0

1 1 1 1
00

0

( 1) ( 1) ( 1) ( 1)
( )

( )
I

I
I t i t I t i t

i t
I t

I− − + − −
= . (87) 
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